Modul 1-15: MODELLBILDUNG UND SIMULATION – PHOTONISCHE SYSTEME .ETIT-302									
Turnus			Dauer	Studienabschnitt	LP	Präsenzanteil	Eigenstudium		
Jährlich zum WS			1 Semester	1. Semester	9	70 h	200 h		
1	Mod	Modulstruktur							
	Nr.	Element / Lehrveranstaltung				LSF-Nr.	Тур	sws	
	1	Spektroskopische Methoden				08 0324	V	2	
	2	Spektroskopische Methoden			08 0325	Ü	1		
	3	Integrierte Photonik und Optical Computing Vorlesung				08 0239	V	2	
	4	Integrier	Integrierte Photonik und Optical Computing Übung			08 0240	Ü	1	

2 Lehrveranstaltungssprache

Deutsch (Englisch)

3 Lehrinhalte der Elemente 1 und 2

- 1. Lichtquellen und -detektoren
- 2. Auswahlregeln
- 3. Laserspektroskopie
- 4. Nicht-dispersive Infrarotspektroskopie
- 5. Fourier-Transformationsspektroskopie
- 6. Ramanspektroskopie
- 7. Fluoreszenzspektroskopie

Lehrinhalte der Elemente 3 und 4

- 1. Grundlagen von Bauelementen der Photonik
- 2. Kristalloptik und nichtlineare Photonik
- 3. Überblick über neuartige Bauelemente der Photonik
- 4. Verbindungstechnik, Speicherarchitekturen und Logikschaltungen
- 5. Konzepte des Optical Computing

Literatur

Spectroscopic Measurement, Mark Linne

Molecular Spectroscopy - Yukihiro Ozaki, Marek Janusz Wójcik, Jürgen Popp

Spectroscopy and Optical Diagnostics for Gases - Ronald K. Hanson, R. Mitchell Spearrin, Christopher

S. Goldenstein

Börner, Müller, Schiek, Trommer: Elemente der integrierten Optik

Ebeling, Karl-Joachim Ebeling: Integrierte Optoelektronik;

Li, Shao, Zhu, Yang: Fundamentals of Optical Computing Technology

4 Kompetenzen

Nach erfolgreichem Abschluss des Moduls besitzen die Studierenden vertiefende Kenntnisse zur Nutzung elektromagnetischer Strahlung zur Analyse von Stoffgemischen. Die Studierenden sind dann befähigt die zugrundliegenden Wechselwirkungsmechanismen zwischen Licht und Materie zu verstehen und einordnen zu können. Die Studierenden sind befähigt, die Möglichkeiten und Herausforderungen des Einsatzes von spektroskopischen Methoden in unterschiedlichen Einsatzumgebungen und Anwendungsfeldern zu bewerten und eine technisch fundierte Auswahl zu treffen.

Die Studierenden werden weiterhin befähigt, die Grundlagen der Wellenausbreitung und der Licht-Materie-Wechselwirkung in der Photonik zu verstehen und anzuwenden. Neben dem Verständnis der Effekte sind sie in der Lage, Komponenten und Systeme der Photonik sowie Architekturen des Optical Computing zu analysieren und zu bewerten.

5 Prüfungen

Modulprüfung: mündliche Prüfung (max. 40 Minuten) oder Klausur (max. 180 Minuten) * Studienleistungen: keine

*Die genauen Prüfungsmodalitäten werden spätestens zur 2. Veranstaltung bekannt gegeben. Die Übungen (Element 4) werden in deutscher und/ oder englischer Sprache durchgeführt. Nähere Informationen dazu werden vom Modulverantwortlichen bekannt gegeben.

6 Prüfungsformen und –leistungen

	☑ Modulprüfung	☐ Teilleistungen					
7	Teilnahmevoraussetzungen						
	Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik und Physik						
8	Modultyp und Verwendbarkeit des Moduls						
	Basismodul im Masterstudiengang "Elektrotechnik und Informationstechnik"						
9	Modulbeauftragte/r	Zuständige Fakultät					
	apl. Prof. DrIng. Dirk Schulz	Fakultät für Elektrotechnik und Informationstechnik					
	Prof. Stefan Palzer, PhD						